ON THE EIGENVALUES OF A VISCOUSLY DAMPED SIMPLE BEAM CARRYING POINT MASSES AND SPRINGS

T.-P. Chang, F.-I. Chang and M.-F. Liu
Department of Applied Mathematics, National Chung-Hsing University, Taichung, Taiwan, R.O.C. E-mail: tpchang@amath.nchu.edu.tw

(Received 29 February 2000, and in final form 5 June 2000)

1. INTRODUCTION

Several authors have studied the vibration of beams with attachments. Goel [1] investigated the free vibration of a beam-mass system hinged at either end by rotational springs and arbitrarily located heavy mass. Gürgöze [2] studied the natural frequencies of restrained beam and rods with point masses, also he [3] derived the characteristic equation of a Bernoulli-Euler beam carrying springs, heavy masses and viscous dampers. Chang [4] analyzed the vibration of a mass-loaded beam with a heavy tip mass by using Laplace transform. Recently, Chang and his associate [5] adopted the same method to perform the vibration analysis of a beam with a two-degrees-of-freedom (2 d.o.fs) spring-mass system. The purpose of this study is to apply Laplace Transform to determine the eigenvalues of a uniform simple beam carrying arbitrarily located point masses, translational springs and viscous dampers.

2. METHOD OF ANALYSIS

The partial differential equation of the free bending vibration for a uniform beam with point masses, springs and viscous dampers, according to Bernoulli-Euler theory, is the well-known expression (see Figure 1)

$$
\begin{align*}
E I & \frac{\partial^{4} w(x, t)}{\partial x^{4}}+m \frac{\partial^{2} w(x, t)}{\partial t^{2}}+\sum_{i=1}^{p} m_{i} \delta\left(x-x_{i}\right) \frac{\partial^{4} w(x, t)}{\partial t^{2}}+\sum_{j=1}^{q} k_{j} \delta\left(x-x_{j}\right) w(x, t) \\
& +\sum_{l=1}^{s} c_{l} \delta\left(x-x_{l}\right) \frac{\partial w(x, t)}{\partial t}=0 \tag{1}
\end{align*}
$$

where $w(x, t)$ is the transverse displacement, m_{i} is the i th point mass, k_{j} is the stiffness of the j th translational spring, c_{l} is the damping constant of the l th viscous damper, m is the mass per unit length of the uniform beam, E is the Young's modulus of elasticity of the beam, I is the area moment of inertia of the beam and $\delta(\cdot)$ is the Dirac delta function.

Assume a solution of equation (1) as the form

$$
\begin{equation*}
w(x, t)=W(x) \mathrm{e}^{2 t}, \tag{2}
\end{equation*}
$$

Figure 1. Viscously damped Bernoulli-Euler beam carrying point masses restrained by linear springs.
then substituting equation (2) into equation (1) gives

$$
\begin{equation*}
E I W^{\prime \prime \prime \prime}+m \lambda^{2} W+\sum_{i=1}^{p} m_{i} \lambda^{2} \delta\left(x-x_{i}\right) W+\sum_{j=1}^{q} k_{j} \delta\left(x-x_{j}\right) W+\sum_{l=1}^{s} c_{l} \lambda \delta\left(x-x_{l}\right) W=0 \tag{3}
\end{equation*}
$$

The boundary conditions at $x=0$ and L are assumed as follows:

$$
\begin{array}{ll}
W(0)=0, & W^{\prime \prime}(0)=0 \\
W(L)=0, & W^{\prime \prime}(L)=0 \tag{4c,d}
\end{array}
$$

Taking the Laplace transform on equation (3) in conjunction with the boundary condition equations (4a) and (4b), then applying the inverse Laplace transform yields

$$
\begin{align*}
W(x)= & \frac{A}{(\sqrt{2} \beta)}\left[\cosh \left(\frac{\sqrt{2} \beta}{2} x\right) \sin \left(\frac{\sqrt{2} \beta}{2} x\right)+\sinh \left(\frac{\sqrt{2} \beta}{2} x\right) \cos \left(\frac{\sqrt{2} \beta}{2} x\right)\right] \\
& +\frac{B}{\sqrt{2} \beta^{3}}\left[\cosh \left(\frac{\sqrt{2} \beta}{2} x\right) \sin \left(\frac{\sqrt{2} \beta}{2} x\right)-\sinh \left(\frac{\sqrt{2} \beta}{2} x\right) \cos \left(\frac{\sqrt{2} \beta}{2} x\right)\right] \\
& \left.+\frac{(-1)^{1 / 4} \beta}{2 m} \sum_{i=1}^{p} m_{i}\left[\sinh (-1)^{1 / 4} \beta\left(x-x_{i}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(x-x_{i}\right)\right)\right] W\left(x_{i}\right) H\left(x-x_{i}\right) \\
& +\frac{(-1)^{1 / 4}}{2 \beta^{3} \alpha} \sum_{j=1}^{q} k_{j}\left[\sinh \left((-1)^{1 / 4} \beta\left(x-x_{j}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(x-x_{j}\right)\right)\right] W\left(x_{j}\right) H\left(x-x_{j}\right) \\
& +\frac{(-1)^{1 / 4}}{2(m \alpha)^{0.5} \beta} \sum_{l=1}^{s} c_{l}\left[\sinh \left((-1)^{1 / 4} \beta\left(x-x_{l}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(x-x_{l}\right)\right)\right] W\left(x_{l}\right) H\left(x-x_{l}\right) \tag{5}
\end{align*}
$$

where $A=W^{\prime}(0), B=W^{\prime \prime \prime}(0), \beta^{4}=m \lambda^{2} / \alpha, \alpha=E I$ and $H(\cdot)$ is the Heaviside unit step function. Now substituting equation (5) into the boundary condition equations (4c) and (4d) yields the following two equations:

$$
\begin{align*}
& \frac{A}{(\sqrt{2} \beta)}\left[\cosh \left(\frac{\sqrt{2} \beta}{2} L\right) \sin \left(\frac{\sqrt{2} \beta}{2} L\right)+\sinh \left(\frac{\sqrt{2} \beta}{2} L\right) \cos \left(\frac{\sqrt{2} \beta}{2} L\right)\right] \\
& \quad+\frac{B}{\sqrt{2} \beta^{3}}\left[\cosh \left(\frac{\sqrt{2} \beta}{2} L\right) \sin \left(\frac{\sqrt{2} \beta}{2} L\right)-\sinh \left(\frac{\sqrt{2} \beta}{2} L\right) \cos \left(\frac{\sqrt{2} \beta}{2} L\right)\right] \\
& \quad+\frac{(-1)^{1 / 4} \beta}{2 m} \sum_{i=1}^{p} m_{i}\left[\sinh \left((-1)^{1 / 4} \beta\left(L-x_{i}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(L-x_{i}\right)\right)\right] W\left(x_{i}\right) H\left(L-x_{i}\right) \\
& \quad+\frac{(-1)^{1 / 4}}{2 \beta^{3} \alpha} \sum_{j=1}^{q} k_{j}\left[\sinh \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right)\right] W\left(x_{j}\right) H\left(L-x_{j}\right) \\
& \quad+\frac{(-1)^{1 / 4}}{2(m \alpha)^{0 \cdot 5} \beta} \sum_{l=1}^{s} c_{l}\left[\sinh \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right)\right] W\left(x_{l}\right) H\left(L-x_{l}\right)=0 \tag{6}
\end{align*}
$$

$$
\begin{align*}
& A\left(\frac{\sqrt{2} \beta}{2}\right)\left[\sinh \left(\frac{\sqrt{2} \beta}{2} L\right) \cos \left(\frac{\sqrt{2} \beta}{2} L\right)-\cosh \left(\frac{\sqrt{2} \beta}{2} L\right) \sin \left(\frac{\sqrt{2} \beta}{2} L\right)\right] \\
& \quad+\frac{B}{\sqrt{2} \beta}\left[\cosh \left(\frac{\sqrt{2} \beta}{2} L\right) \sin \left(\frac{\sqrt{2} \beta}{2} L\right)+\sinh \left(\frac{\sqrt{2} \beta}{2} L\right) \cos \left(\frac{\sqrt{2} \beta}{2} L\right)\right] \\
& \quad+\frac{(-1)^{3 / 4} \beta^{3}}{2 m} \sum_{i=1}^{p} m_{i}\left[\sinh \left((-1)^{1 / 4} \beta\left(L-x_{i}\right)\right)+\sin \left((-1)^{1 / 4} \beta\left(L-x_{i}\right)\right)\right] W\left(x_{i}\right) \\
& \quad+\frac{(-1)^{3 / 4}}{2 \beta \alpha} \sum_{j=1}^{q} k_{j}\left[\sinh \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right)+\sin \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right)\right] W\left(x_{j}\right) \\
& \quad+\frac{(-1)^{3 / 4} \beta}{2(m \alpha)^{0 \cdot 5}} \sum_{l=1}^{s} c_{l}\left[\sinh \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right)+\sin \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right)\right] W\left(x_{l}\right)=0 \tag{7}
\end{align*}
$$

Let $x=x_{i}, x=x_{j}, x=x_{l}$ in equation (5), thus we can obtain $W\left(x_{i}\right), W\left(x_{j}\right)$ and $W\left(x_{l}\right)$. After inserting $W\left(x_{i}\right), W\left(x_{j}\right)$ and $W\left(x_{l}\right)$ into equations (6) and (7) in order to eliminate $W\left(x_{i}\right), W\left(x_{j}\right)$ and $W\left(x_{l}\right)$, therefore a system of homogeneous equations with two unknowns A and B will be achieved. The determinant of the coefficients of these equations, which is the characteristic equation, must be equal to zero for each eigenvalues $\lambda_{n}(n=1,2,3, \ldots, \infty)$. Finally, the characteristic equation can be expressed as

$$
\begin{aligned}
& \left\{\left(\frac{1}{\sqrt{2} \beta}\right) f_{1}+\left(\frac{\sqrt{2}(-1)^{1 / 4}}{4 m}\right) \sum_{i=1}^{p} m_{i} h_{1 i} n_{1 i}\right. \\
& \quad+\left(\frac{(-1)^{1 / 4}}{2 \alpha \beta^{3}}\right) \sum_{j=1}^{q} k_{j} h_{1 i}\left[\frac{f_{2 j}}{\sqrt{2} \beta}+\frac{(-1)^{1 / 4} \sqrt{2}}{4 m} \sum_{i=1}^{p} m_{i} h_{2 i} n_{1 i}\right]
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{l}
+\left(\frac{(-1)^{1 / 4}}{2(m \alpha)^{0 \cdot 5} \beta}\right)_{l=1}^{s} c_{l} n_{2 l}\left[\left(\frac{1}{\sqrt{2} \beta}\right) f_{3 l}+\left(\frac{(-1)^{1 / 4} \sqrt{2}}{4 m}\right) \sum_{i=1}^{p} m_{i} h_{3 i} n_{1 i}\right. \\
\left.+\frac{(-1)^{1 / 4}}{2 \alpha \beta^{3}} \sum_{j=1}^{q} k_{j} f_{6 j}\left(\frac{1}{\sqrt{2} \beta} f_{2 j}+\frac{(-1)^{1 / 4} \sqrt{2}}{4 m} \sum_{i=1}^{p} m_{i} h_{2 i} n_{1 i}\right)\right] \\
\times\left\{\left(\frac{1}{\sqrt{2} \beta}\right) f_{1}+\frac{(-1)^{3 / 4} \sqrt{2}}{4 m} \sum_{i=1}^{p} m_{i} h_{2 i} n_{3 i}+\left(\frac{(-1)^{3 / 4}}{2 \beta \alpha}\right) \sum_{j=1}^{q} k_{j} f_{4 j}\left[\left(\frac{1}{\sqrt{2} \beta^{3}}\right) h_{4 j}\right.\right. \\
\left.+\frac{(-1)^{1 / 4} \sqrt{2}}{8 m} \sum_{i=1}^{p} m_{i} h_{2 i} n_{3 i}\right]+\frac{(-1)^{3 / 4} \beta}{2 \sqrt{m \alpha}} \sum_{l=1}^{s} c_{l} n_{4 l}\left[\frac{1}{\sqrt{2} \beta^{3}} f_{5 l}+\frac{(-1)^{1 / 4}}{2 \sqrt{2} \beta^{2} m_{i}} \sum_{i=1}^{p} m_{i} h_{3 i} n_{3 i}\right. \\
\left.\left.+\frac{(-1)^{1 / 4}}{2 \beta^{3} \alpha} \sum_{j=1}^{q} k_{j} f_{6 j}\left(\frac{1}{\sqrt{2} \beta^{3}} h_{4 j}+\frac{(-1)^{1 / 4}}{2 \sqrt{2} \beta^{2}} \sum_{i=1}^{p} m_{i} h_{2 i} n_{3 i}\right)\right]\right\} \\
-\left\{\frac{1}{\sqrt{2} \beta^{3}} n_{5}+\frac{(-1)^{1 / 4}}{2 \sqrt{2} \beta^{2} m_{i=1}^{p}} \sum_{i}^{p} m_{i} h_{1 i} n_{3 i}+\frac{(-1)^{1 / 4}}{2 \beta^{3} \alpha} \sum_{j=1}^{q} k_{j} h_{5 j}\right. \\
\times\left[\frac{1}{\sqrt{2} \beta^{3}} h_{4 j}+\frac{(-1)^{1 / 4}}{2 \sqrt{2} \beta^{2} m_{i=1}^{p}} m_{i} h_{2 i} n_{3 i}\right]+\frac{(-1)^{1 / 4}}{2 \beta \sqrt{m \alpha}} \sum_{l=1}^{s} c_{l} n_{2 l} \\
\times\left[\frac{1}{\sqrt{2} \beta^{3}} f_{5 l}+\frac{(-1)^{1 / 4}}{2 \sqrt{2} \beta^{2}} \sum_{i=1}^{p} m_{i} h_{3 i} n_{3 i}+\frac{(-1)^{1 / 4}}{2 \beta^{3} \alpha} \sum_{j=1}^{q} k_{j} f_{6 j}\right. \\
\left.\left.\times\left(\frac{1}{\sqrt{2} \beta^{3}} h_{4 j}+\frac{(-1)^{1 / 4}}{2 \sqrt{2} \beta^{2} m} \sum_{i=1}^{p} m_{i} h_{2 i}\right)\right]\right\}\left\{\frac{\beta}{4} h_{6}+\frac{(-1)^{3 / 4} \beta^{2}}{2 \sqrt{2} m} \sum_{i=1}^{p} m_{i} h_{1 i} n_{1 i}\right. \\
+\frac{(-1)^{3 / 4}}{2 \beta \alpha} \sum_{j=1}^{q} k_{j} n_{6 j}\left[\frac{1}{\sqrt{2} \beta} f_{2 j}+\frac{\sqrt{2}(-1)^{1 / 4}}{4 m} \sum_{i=1}^{p} m_{i} h_{2 i} n_{1 i}\right] \\
+\frac{(-1)^{3 / 4} \beta}{2 \sqrt{m \alpha}} \sum_{l=1}^{s} c_{l} n_{4 l}\left[\frac{1}{\sqrt{2} \beta} f_{3 l}+\frac{\sqrt{2}(-1)^{1 / 4}}{4 m} \sum_{i=1}^{p} m_{i} h_{3 i} n_{1 i}\right. \\
2^{3} \alpha \tag{8}
\end{array} \sum_{j=1}^{q} k_{j} f_{6 j}\left(\frac{1}{\sqrt{2} \beta} f_{2 j}+\frac{\sqrt{2}(-1)^{1 / 4}}{4 m} \sum_{i=1}^{p} m_{i} h_{2 i} n_{1 i}\right)\right]\right\}=0, ~ 子\right\}
$$

where $f_{1}, f_{2 j}, \ldots, f_{6 j}, h_{1 i}, \ldots, h_{5 j}, h_{6}, n_{1 j}, \ldots, n_{6 j}$ are functions of $\beta, \alpha, x_{i}, x_{j}, x_{l}$ and λ_{n}, which are presented in Appendix A. The eigenvalues λ_{n} can be calculated readily after equation (8) has been solved.

3. NUMERICAL RESULTS AND DISCUSSIONS

Some numerical examples are presented to demonstrate the validity of the proposed method. The system parameters used here are as follows: beam mass density $m=341.615 \mathrm{slug} / \mathrm{ft}\left(1.6363 \times 10^{4} \mathrm{~kg} / \mathrm{m}\right)$; beam Young's modulus $E=576,000 \mathrm{kips} / \mathrm{ft}^{2}$

Table 1
Eigenvalues λ_{n} for $x_{i 1}=0, m_{1}=0$

Mode (n)	$\lambda_{n}=\mathrm{i} \omega_{n}$ (present)	$\omega_{n}=\frac{\left(\beta_{n} L\right)^{2}}{L^{2}} \sqrt{\frac{E I}{m}}$ (Ref. [1])
1	$\pm 1 \cdot 356286 e+002 i$	$1 \cdot 356286 e+002$
2	$\pm 5 \cdot 425147 e+002 i$	$5 \cdot 425147 e+002$
3	$\pm 1 \cdot 220658 e+003 i$	$1 \cdot 220658 e+003$

Table 2
Eigenvalues λ_{n} for $x_{i 1}=L / 2, m_{1}=0.01 m L$

Mode (n)	$\lambda_{n}=\mathrm{i} \omega_{n}$ (present)	$\omega_{n}=\frac{\left(\beta_{n} L\right)^{2}}{L^{2}} \sqrt{\frac{E I}{m}}$ (Ref. [1])
1	$\pm 1 \cdot 342920 e+002 i$	$1 \cdot 342920 e+002$
2	$\pm 5 \cdot 425147 e+002 i$	$5 \cdot 425147 e+002$
3	$\pm 1 \cdot 208820 e+003 i$	$1 \cdot 208820 e+003$

Table 3
Eigenvalues λ_{n} for $x_{i 1}=L / 2, m_{1}=0 \cdot 1 m L$

Mode (n)	$\lambda_{n}=\mathrm{i} \omega_{n}$ (present)	$\omega_{n}=\frac{\left(\beta_{n} L\right)^{2}}{L^{2}} \sqrt{\frac{E I}{m}}($ Ref. [1] $)$
1	$\pm 1 \cdot 237859 e+002 i$	$1 \cdot 237859 e+002$
2	$\pm 5 \cdot 425147 e+002 i$	$5 \cdot 425147 e+002$
3	$\pm 1 \cdot 127885 e+003 i$	$1 \cdot 127885 e+003$

$\left(2.756 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\right.$); beam length $L=50 \mathrm{ft}(15 \cdot 24 \mathrm{~m})$. For simplicity, p, q and s are all considered as one in the numerical computations. There are infinite number of roots in equation (8), and the first three roots are evaluated by using Secant method in conjunction with MATLAB. There are six parameters in the characteristic equation: $m_{1}, k_{1}, c_{1}, x_{i 1}, x_{j 1}$ and $x_{l 1}$ denoting individually the point mass, spring constant, damping constant, locations of the point mass, spring and damper.

First of all, the eigenvalues of the beam carrying only the point mass is calculated. Tables 1-4 show the comparisons between the results calculated according to the present method and those of the others. As it can be seen, the eigenvalues λ_{n} shows an excellent agreement between the results from the proposed method and those of the other methods for different magnitude of the heavy mass. Moreover, it is very interesting to notice that the second eigenvalues are almost identical for various heavy masses. This phenomenon can be illustrated since the heavy mass is located at the middle, which happens to be the node of the second mode; therefore, it does not have any impact on the second natural frequency. Secondly, the eigenvalues of the beam with only the translation spring attached are evaluated and presented in Tables 5-7. As it can be detected from Table 7, the first eigenvalue of the system with spring $\left(k_{1}=23 m L \omega_{1}^{2}\right)$ is exactly four times the second

Table 4
Eigenvalues λ_{n} for $x_{i 1}=L / 2, m_{1}=m L$

Mode (n)	$\lambda_{n}=\mathrm{i} \omega_{n}$ (present)	$\omega_{n}=\frac{\left(\beta_{n} L\right)^{2}}{L^{2}} \sqrt{\frac{E I}{m}}$
1	$\pm 0 \cdot 780493 e+002 i$	-
2	$\pm 5 \cdot 425147 e+002 i$	-
3	$\pm 9 \cdot 329262 e+002 i$	-

Table 5
Eigenvalues λ_{n} for $x_{j 1}=L / 2, k_{1}=0 \cdot 1 m L \omega_{1}^{2}$

Mode (n)	$\lambda_{n}=\mathrm{i} \omega_{n}$ (present)	$\omega_{n}=\frac{\left(\beta_{n} L\right)^{2}}{L^{2}} \sqrt{\frac{E I}{m}}$
1	$\pm 1 \cdot 485370 e+002 i$	-
2	$\pm 5 \cdot 425147 e+002 i$	-
3	$\pm 1 \cdot 222167 e+003 i$	-

Table 6
Eigenvalues λ_{n} for $x_{j 1}=L / 2, k_{1}=m L \omega_{1}^{2}$

Mode (n)	$\lambda_{n}=\mathrm{i} \omega_{n}$ (present)	$\omega_{n}=\frac{\left(\beta_{n} L\right)^{2}}{L^{2}} \sqrt{\frac{E I}{m}}$
1	$\pm 2 \cdot 326012 e+002 i$	-
2	$\pm 5 \cdot 425147 e+002 i$	-
3	$\pm 1 \cdot 235927 e+003 i$	-

Table 7
Eigenvalues λ_{n} for $x_{j 1}=L / 2, k_{1}=23 m L \omega_{1}^{2}$

Mode (n)	$\lambda_{n}=\mathrm{i} \omega_{n}$ (present)	$\omega_{n}=\frac{\left(\beta_{n} L\right)^{2}}{L^{2}} \sqrt{\frac{E I}{m}}$
1	$\pm 5 \cdot 425147 e+002 i$	$5 \cdot 425147 e+002$
2	$\pm 5 \cdot 425147 e+002 i$	-
3	$\pm 1 \cdot 597886 e+003 i$	-

eigenvalue of the system in Table 7. Physically speaking, the system in Table 7 can be considered as a beam attached by a spring with infinite spring constant, so that the span length of this system is reduced to be half of the original length of the system without any spring attached. Once again, the second eigenvalues of the system remains almost the same despite the spring constants being different; the phenomenon again is quite understood since the spring is located at the middle of the beam, which is the node of the second mode.

Table 8
Eigenvalues λ_{n} for $x_{j 1}=L / 2, c_{1}=0 \cdot 1 m L \omega_{1}$

Mode (n)	λ_{n}
1	$-1.357088 e+001 \pm 1.349884 e+002 i$
2	$-3.617202 e-014 \pm 5.425147 e+002 i$
3	$-1.356018 e+001 \pm 1.220340 e+003 i$

Table 9
Eigenvalues λ_{n} for $x_{j 1}=L / 2, c_{1}=0 \cdot 2 m L \omega_{1}$

Mode (n)	λ_{n}
1	$-2 \cdot 719003 e+001 \pm 1 \cdot 330399 e+002 i$
2	$-5 \cdot 545447 e-012 \pm 5 \cdot 425147 e+002 i$
3	$-2.710418 e+001 \pm 1.219386 e+003 i$

Table 10
Eigenvalues λ_{n} for $x_{j 1}=L / 2, c_{1}=0 \cdot 3 m L \omega_{1}$

Mode (n)	λ_{n}
1	$-4.090648 e+001 \pm 1 \cdot 296947 e+002 i$
2	$-1.331735 e-012 \pm 5 \cdot 425147 e+002 i$
3	$-4.061522 e+001 \pm 1.217792 e+003 i$

Table 11
Eigenvalues $\quad \lambda_{n} \quad$ for $\quad x_{i 1}=L / 2, \quad x_{j 1}=L / 2, \quad x_{l 1}=L / 2, \quad m_{1}=0 \cdot 1 m L$, $k_{1}=0 \cdot 1 m L \omega_{1}^{2}, c_{1}=0 \cdot 1 m L \omega_{1}$

Mode (n)	λ_{n}
1	$-1 \cdot 130626 e+001 \pm 1 \cdot 351799 e+002 i$
2	$-4 \cdot 177324 e-012 \pm 5 \cdot 425147 e+002 i$
3	$-8 \cdot 482803 e+000 \pm 1 \cdot 128716 e+003 i$

In Tables 8-10, the eigenvalues of the system carrying the damper are obtained for different damping constants, it should be noted that the computed eigenvalues are complex numbers which are quite reasonable. Also it can be concluded that the second eigenvalues of the structure are unchanged for different damping constants. Finally, as presented in Table 11, the first three eigenvalues are calculated for the case with $m_{1}=0 \cdot 1 m L, k_{1}=0 \cdot 1 m L \omega_{1}^{2}$, $c_{1}=0 \cdot 1 m L \omega_{1}, x_{i 1}=L / 2, x_{j 1}=L / 2$ and $x_{l 1}=L / 2$. In Figure 2, the undamped first natural frequency of the system, carrying a heavy mass $m_{1}=m L$, is plotted against the position of the point mass. As it can be seen from the plot that the first natural frequency reaches the minimum value as the position of the mass is located at the middle, which is definitely

Figure 2. First natural frequency versus the position of mass.

Figure 3. First natural frequency versus the non-dimensional mass.

Figure 4. First natural frequency versus the position of spring.
rational since it produces largest static deflection in the middle. In Figure 3 the first natural frequency of the system with a point mass located at the middle of the beam is depicted for various non-dimensional mass $Q=m_{1} / m L$, it is quite acceptable that the fundamental natural frequency gets smaller as non-dimensional mass Q gets larger. In Figure 4, the undamped first natural frequency of the system, carrying a spring with spring constant $k_{1}=m L \omega_{1}^{2}$, is depicted with respect to the position of the spring. It is noted that the first natural frequency becomes a maximum as the spring is located at the middle of the beam. It can be explained that the smaller static deflection of the beam is obtained when the spring is attached at the middle rather than at any other places of the beam. As it can be found from Figure 5, the first natural frequency of the system is presented for various non-dimensional spring $G=k_{1} / m L \omega_{1}^{2}$, it is noted that the first natural frequency becomes larger as non-dimensional spring G gets larger.

Figure 5. First natural frequency versus the non-dimensional spring.

4. CONCLUSIONS

In this paper, the natural frequencies of a Bernoulli-Euler beam carrying arbitrarily located point masses, translational springs and viscous dampers are determined by using Laplace transform with respect to the spatial variable. The various cases of different location and magnitude of spring constants and point masses are investigated to model different structural systems, it is noted that the proposed approach plays an important role in performing the analysis and design of the structures.

REFERENCES

1. R. P. Goel 1976 Journal of Sound and Vibration 47, 9-14. Free vibrations of a beam-mass system with elastically restrained ends.
2. M. GÜrgöze 1984 Journal of Sound and Vibration 96, 461-468. A note on the vibrations of restrained beams and rods with point masses.
3. M. Gürgöze 1997 Journal of Sound and Vibration 208, 153-158. On the eigenvalues of viscously damped beams, carrying heavy masses and restrained by linear and torsional springs.
4. T.-P. Chang 1993 Journal of Sound and Vibration 164, 471-484. Forced vibration of a mass-loaded beam with a heavy tip body.
5. T.-P. Chang and C-Y. Chang 1998 International Journal of Solids and Structures 35, 383-401. Vibration analysis of beams with a two degree-of-freedom spring-mass system.

APPENDIX A

$$
\begin{aligned}
& f_{1}=\cosh \left(\frac{\sqrt{2} \beta}{2} L\right) \sin \left(\frac{\sqrt{2} \beta}{2} L\right)+\sinh \left(\frac{\sqrt{2} \beta}{2} L\right) \cos \left(\frac{\sqrt{2} \beta}{2} L\right) \\
& f_{2 j}=\cosh \left(\frac{\sqrt{2} \beta}{2} x_{j}\right) \sin \left(\frac{\sqrt{2} \beta}{2} x_{j}\right)+\sinh \left(\frac{\sqrt{2} \beta}{2} x_{j}\right) \cos \left(\frac{\sqrt{2} \beta}{2} x_{j}\right) \\
& f_{3 l}=\cosh \left(\frac{\sqrt{2} \beta}{2} x_{l}\right) \sin \left(\frac{\sqrt{2} \beta}{2} x_{l}\right)+\sinh \left(\frac{\sqrt{2} \beta}{2} x_{l}\right) \cos \left(\frac{\sqrt{2} \beta}{2} x_{l}\right) \\
& f_{4 j}=\sinh \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right)+\sin \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right) \\
& f_{5 l}=\cosh \left(\frac{\sqrt{2} \beta}{2} x_{l}\right) \sin \left(\frac{\sqrt{2} \beta}{2} x_{l}\right)-\sinh \left(\frac{\sqrt{2} \beta}{2} x_{l}\right) \cos \left(\frac{\sqrt{2} \beta}{2} x_{l}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{6 j}=\sinh \left((-1)^{1 / 4} \beta\left(x_{l}-x_{j}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(x_{l}-x_{j}\right)\right), \\
& h_{1 i}=\sinh \left((-1)^{1 / 4} \beta\left(L-x_{i}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(L-x_{i}\right)\right), \\
& h_{2 i}=\sinh \left((-1)^{1 / 4} \beta\left(x_{j}-x_{i}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(x_{j}-x_{i}\right)\right), \\
& h_{3 i}=\sinh \left((-1)^{1 / 4} \beta\left(x_{l}-x_{i}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(x_{l}-x_{i}\right)\right), \\
& h_{4 j}=\cosh \left(\frac{\sqrt{2} \beta}{2} x_{j}\right) \sin \left(\frac{\sqrt{2} \beta}{2} x_{j}\right)-\sinh \left(\frac{\sqrt{2} \beta}{2} x_{j}\right) \cos \left(\frac{\sqrt{2} \beta}{2} x_{j}\right), \\
& h_{5 j}=\sinh \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right) \\
& h_{6}=\sinh \left(\frac{\sqrt{2} \beta}{2} L\right) \cos \left(\frac{\sqrt{2} \beta}{2} L\right)-\cosh \left(\frac{\sqrt{2} \beta}{2} L\right) \sin \left(\frac{\sqrt{2} \beta}{2} L\right), \\
& n_{1 i}=\cosh \left(\frac{\sqrt{2} \beta}{2} x_{i}\right) \sin \left(\frac{\sqrt{2} \beta}{2} x_{i}\right)+\sinh \left(\frac{\sqrt{2} \beta}{2} x_{i}\right) \cos \left(\frac{\sqrt{2} \beta}{2} x_{i}\right), \\
& n_{2 l}=\sinh \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right)-\sin \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right), \\
& n_{3 i}=\cosh \left(\frac{\sqrt{2} \beta}{2} x_{i}\right) \sin \left(\frac{\sqrt{2} \beta}{2} x_{i}\right)-\sinh \left(\frac{\sqrt{2} \beta}{2} x_{i}\right) \cos \left(\frac{\sqrt{2} \beta}{2} x_{i}\right), \\
& n_{4 l}=\sinh \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right)+\sin \left((-1)^{1 / 4} \beta\left(L-x_{l}\right)\right), \\
& n_{5}=\cosh \left(\frac{\sqrt{2} \beta}{2} L\right) \sin \left(\frac{\sqrt{2} \beta}{2} L\right)-\sinh \left(\frac{\sqrt{2} \beta}{2} L\right) \cos \left(\frac{\sqrt{2} \beta}{2} L\right), \\
& n_{6 j}=\sinh \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right)+\sin \left((-1)^{1 / 4} \beta\left(L-x_{j}\right)\right) .
\end{aligned}
$$

